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Quantum-limit Chern topological 
magnetism in TbMn6Sn6

Jia-Xin Yin1,15 ✉, Wenlong Ma2,15, Tyler A. Cochran1,15, Xitong Xu2,15, Songtian S. Zhang1,  
Hung-Ju Tien3, Nana Shumiya1, Guangming Cheng4, Kun Jiang5, Biao Lian6, Zhida Song7, 
Guoqing Chang1, Ilya Belopolski1, Daniel Multer1, Maksim Litskevich1, Zi-Jia Cheng1,  
Xian P. Yang1, Bianca Swidler1, Huibin Zhou2, Hsin Lin8, Titus Neupert9, Ziqiang Wang5,  
Nan Yao4, Tay-Rong Chang3,10,11, Shuang Jia2,12,13 ✉ & M. Zahid Hasan1,14 ✉

The quantum-level interplay between geometry, topology and correlation is at the 
forefront of fundamental physics1–15. Kagome magnets are predicted to support 
intrinsic Chern quantum phases owing to their unusual lattice geometry and breaking 
of time-reversal symmetry14,15. However, quantum materials hosting ideal spin–
orbit-coupled kagome lattices with strong out-of-plane magnetization are lacking16–21. 
Here, using scanning tunnelling microscopy, we identify a new topological kagome 
magnet, TbMn6Sn6, that is close to satisfying these criteria. We visualize its effectively 
defect-free, purely manganese-based ferromagnetic kagome lattice with atomic 
resolution. Remarkably, its electronic state shows distinct Landau quantization on 
application of a magnetic field, and the quantized Landau fan structure features 
spin-polarized Dirac dispersion with a large Chern gap. We further demonstrate the 
bulk–boundary correspondence between the Chern gap and the topological edge 
state, as well as the Berry curvature field correspondence of Chern gapped Dirac 
fermions. Our results point to the realization of a quantum-limit Chern phase in 
TbMn6Sn6, and may enable the observation of topological quantum phenomena in 
the RMn6Sn6 (where R is a rare earth element) family with a variety of magnetic 
structures. Our visualization of the magnetic bulk–boundary–Berry correspondence 
covering real space and momentum space demonstrates a proof-of-principle method 
for revealing topological magnets.

The exploration of quantum topology under non-trivial lattice geom-
etry and strong electron interaction is emerging as a new frontier in 
condensed-matter physics that not only has analogies with high-energy 
physics but also expands the range of quantum materials available for 
next-generation technology1–15. Recently, the transition-metal-based 
kagome magnets have attracted great attention, as they often show 
correlated topological band structures7,8,16–20. A kagome lattice, made 
of corner-sharing triangles, naturally has relativistic band crossings 
at the Brillouin zone corners (Fig. 1a). The inclusion of spin–orbit cou-
pling and out-of-plane ferromagnetic ordering in the kagome lattice 
effectively realizes the spinless Haldane model by generating Chern 
gapped topological fermions9,10,13–15 (Fig. 1b). However, direct experi-
mental visualization of the phenomenon remains challenging owing 
to the existence of tin atoms in the kagome layer, the close stacking of 
the kagome lattices and the tendency to form in-plane magnetization 
for most kagome magnets16–20. Through intense research in this study, 

we find that TbMn6Sn6 is a key advance in quantum materials. Unlike 
other members of the kagome magnet family, it consists of segregated 
kagome layers formed purely by manganese atoms. More crucially, its 
kagome lattice uniquely features both an out-of-plane magnetization 
ground state and the largest coercivity (1.1 T) within the RMn6Sn6 family 
(Fig. 1c)22–24. Therefore, TbMn6Sn6 is a tantalizing system to search for 
the Chern gapped topological fermions.

TbMn6Sn6 has a layered crystal structure with space group P6/mmm 
and hexagonal lattice constants a = 5.5 Å and c = 9.0 Å. It consists of a 
manganese kagome layer with tin and terbium successively distrib-
uted in alternating layers stacked along the c axis. The material has 
a ferrimagnetic ground state (Curie temperature, TC = 423 K), with a 
manganese moment of 2.4 Bohr magnetons (μB) ferromagnetically 
aligned along the c axis and a terbium moment of 8.6μB anti-aligned 
along the c axis (Fig. 1d)24. We grew high-quality single crystals using a 
flux method. The TbMn6Sn6 crystal shows a well-defined magnetization 
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loop for the field applied along the c axis and no magnetization loop 
for the field applied within the a–b plane in Fig. 1d (right), confirming 
the strong out-of-plane magnetization. The side-plane map of the crys-
tal measured by scanning transmission electron microscopy in Fig. 1e 
directly shows its atomic stacking sequence along the c axis. It can be 
seen that the interlayer distance between the TbSn layer and the man-
ganese layer is the largest, and the crystal tends to cleave along this 
plane. By searching extensively over 50 cryogenically cleaved crystals 
with low-temperature (T = 4.2 K) scanning tunnelling microscopy, we 
were able to obtain a large atomically flat manganese kagome lattice, 
as shown in Fig. 1f. Its zoomed-in image, measured with a much lower 
junction resistance setup, directly reveals the manganese kagome 
atoms. Moreover, unlike topographies of the kagome lattice in other 
kagome magnets7,8,20,25,26, which show various atomic defects, there is no  
detectable defect over a large field of view. The experimental visualization 
of such a defect-free magnetic kagome lattice offers an unprecedented 
opportunity to explore its intrinsic topological quantum properties.

Next we measured the low-energy tunnelling spectrum of the  
manganese kagome lattice under an applied magnetic field (Fig. 2a, 
b). We find the zero-field spectra to be spatially homogeneous. When 
applying a 9-T magnetic field along the c axis, the spectra show drastic 
changes with the emergence of a series of states widely distributed in 
energy, which is a clear signature of Landau quantization. We find the 
Landau quantization of the kagome layer is unique within this material; 
as for the other observed lattice with stripe morphology, we do not 
detect a strong field response up to 9 T (Fig. 2c, d). This surface is likely 
to be the TbSn layer based on the aforementioned easy cleavage plane 
and the fact that R3+ surface ions may have dangling bonds favouring 
reconstruction27. Moreover, none of the reported tunnelling studies on 
kagome materials have shown Landau quantization7,8,20,25,26. Therefore, 
the Landau quantization of the magnetic manganese kagome lattice 
suggests that it is distinguishably in the quantum limit.

To understand the origin of this Landau quantization, we map its fan 
diagram in Fig. 3a by slowly increasing the magnetic field. Mapping 

out the Landau fan is a non-trivial task in tunnelling experiments, and 
there are only a few successful examples in quantum materials, includ-
ing graphene28, bismuth29 and topological insulators30,31. In these cases, 
analysis of the Landau fan extracts precise band structure information 
in momentum space, but applying such methodology to a correlated 
topological magnet remains challenging. For a spin–orbit-coupled 
kagome lattice with out-of-plane magnetization, it is natural to consider 
the existence of spin-polarized Dirac fermions with a Chern gap14,15. We 
highlight several key features in the Landau fan diagram that constrain 
the analysis along this direction. First, the zero-field peak shifts almost 
linearly to lower energy with increasing field, which indicates the  
presence of magnetic polarization with a Zeeman term (ΔE = ½gμBB, 
where g is the Landé g-factor and B is the magnetic field strength). The 
observation of a Zeeman shift rather than a splitting demonstrates 
that the electronic states are spin-polarized, which is crucial for the 
Chern-gap formation14,15. Second, below this state, the other Landau 
levels shift nonlinearly with a square-root-like field dependence, and 
their separation at 9 T decreases for levels at lower energies. Both these 
factors are consistent with Dirac-like fermions28 featuring the energy 
spectrum ε n B≈n  (n = 0, ±1, ±2... is the Landau level index number). 
Third, above the zero-field peak, an intense state emerges and shifts 
in parallel with it. These two states that shift linearly with the field are 
likely to define the expected Chern gap Δ that is determined by the 
intrinsic spin–orbit coupling. The zero-field peak may be formed by 
accumulated states from the top of the lower Dirac branch7.

A Chern gap modifies the bare Dirac dispersion εk = ED ± ħkν into 
kE E Δ ħ v= ± ( /2) + ( )k D

2 2  (ED is the Dirac cone energy, ħ is the reduced 
Planck constant, v is the Dirac velocity and k is the momentum vector). 
Hence to describe this Landau fan diagram, we start with a formula 
written as: E E Δ n eħv B gμ B= ± ( /2) + 2| | −n D

2 2 1
2 B   (where e is the elemen-

tary charge). A simulation of the Landau fan data with this formula is 
shown in Fig. 3b with parameters ED = 130 ± 4 meV (where ± denotes the 
s.d. error), Δ = 34 ± 2 meV, v = 4.2 ± 0.3 × 105 m s−1 and g = 52 ± 2. The large 
g-factor has also been reported in other topological materials, which 
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Fig. 1 | Atomic-scale visualization of the defect-free magnetic kagome 
lattice. a, Illustration of Dirac band crossings (hourglass cones) at the Brillouin 
zone (dashed lines) corners for a kagome lattice (spheres connected by solid 
lines). b, Left, illustration of spin-polarized Dirac fermions with a Chern gap 
(two separated cones with upward arrows indicating spin polarization) in the 
spin–orbit-coupled magnetic kagome lattice (spheres with upward arrows 
indicating ferromagnetism). Right, illustration of the edge mode (purple dark 
region between the tips of two cones) that arises within the Chern gap.  
c, Summary of the magnetic ground state of the manganese kagome lattice in 
the RMn6Sn6 family, including in-plane ferromagnetism (R = Gd, Er, Tm, Yb), 

in-plane antiferromagnetism (R = Sc, Y, Lu), canted ferromagnetism (R = Dy, Ho) 
and out-of-plane ferromagnetism (R = Tb). d, Magnetism in TbMn6Sn6, with the 
left image illustrating its magnetic structure of manganese (blue) and terbium 
(red) atoms, and the right image showing the out-of-plane (solid lines) and 
in-plane (dashed lines) magnetization curves taken at 4.2 K. ‘f.u.’ denotes the 
formula unit. e, Scanning transmission electron microscope image of 
TbMn6Sn6, showing the atomic interlayer stacking. H, high; L, low. f, Scanning 
tunnelling microscopy image of the manganese-terminating surface taken at 
4.2 K. The inset shows a magnified image of the kagome lattice.
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may arise from the orbital contribution. In the kagome tight-binding 
model with nearest-neighbour hopping, the Dirac dispersions appear 
at the Brillouin zone corners. Our exploration of the band structure 
below the Fermi level via angle-resolved photoemission indeed finds 
linear dispersions near the zone corners with a similar Fermi veloc-
ity, which also reasonably connect to the Chern gapped Dirac band 
extracted from the tunnelling data, as shown in Fig. 3c. We further 
find that the gap extracted directly from the energy distance of the 
two peaks increases slightly with the field, correlating with that of the 
out-of-plane magnetization value MC (Fig. 3d). The weak field depend-
ence supports the interpretation that the Chern gap is not opened by 
the external field but induced by the intrinsic spin–orbit coupling15. The 
existence of predominant Chern gapped Dirac fermions just around 
the Fermi level is another key factor in driving this defect-free kagome 
lattice to the quantum limit.

The non-trivial topology of the Chern gap produces the dissipa-
tionless edge state. To visualize this bulk–boundary correspondence,  
we perform tunnelling measurements to map a step edge (Fig. 4a).  
Both the upper and lower layers of the step edge are surfaces formed by 
the manganese kagome lattices with a unit-cell step height of about 9 Å, 
and therefore have similar density of states. We observe a pronounced 
localized edge when mapping at energy within the Chern gap, while no 
clear edge state is detectable at other energies outside the gap, confirm-
ing the existence of the non-trivial in-gap edge state32,33. We also explore 
the tunnelling signal on the side cleaving surface (Fig. 4b). We perform 
mapping over a large area, and their direct Fourier transforms give 
rise to a quasiparticle scattering signal. We observe that quasiparticle 

scattering along the bulk edge direction is substantially reduced within 
the energy range of the Chern gap, in agreement with the dissipationless 
nature (lack of backscattering) of the Chern edge state. The magnetic 
Landau fan exhibiting a Chern gap and the emergence of in-gap edge 
states lack of backscattering together provide spectroscopic evidence 
for the topological bulk–boundary correspondence.

In addition to the bulk–boundary correspondence, Chern gapped 
Dirac fermions will also feature large Berry curvature34–40. This Berry 
curvature contribution to anomalous Hall conductivity is estimated39 
as σ e h e h= × / = (0.13 ± 0.01) /xy

Δ
E2

2 2
D

 based on the tunnelling data. 
Indeed, we observe the anomalous Hall signal ρAH in the Hall resistivity 
of the bulk crystal (Extended Data Fig. 3). When plotting ρAH against 
the square of the longitudinal resistivity ρ xx

2 , we observe a linear scaling 
(Fig.  4c), indicating a predominant intrinsic contribution34–38.  
From the linear fit (ρ A σ ρ= + xxAH

int 2 , where A is a constant coefficient), 
we find that this intrinsic contribution is σint = 121 ± 6 Ω−1 cm−1. This 
amounts to σ e h= (0.14 ± 0.01) /xy

int 2  per manganese kagome layer,  
which agrees with the expected σxy, attesting to the Berry curvature 
correspondence of Chern gapped Dirac fermions.

Our observations of magnetic Landau quantization and bulk–
boundary–Berry correspondence provide strong evidence in space 
and momentum for a quantum-limit Chern magnet. It is extremely 
rare to find a topological magnetic system featuring a quantized 
Landau fan, which requires defect-free magnetic material design and 
cutting-edge spectroscopy characterization. It is equally rare to find 
a large-Chern-gap system to demonstrate its topological correspond-
ence, which is one of the key pursuits in the pertinent fundamental 
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research area of topological matter9,10. Given that there are dozens 
of compounds with similar structures to TbMn6Sn6 that host kagome 
lattices with a variety of magnetic structures and wide tunability of 
the lattice constant, our findings provide a valuable guideline for dis-
covering other intimately related, yet hitherto unknown, topological 
or quantum phenomena.
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The bottom inset illustrates the Berry curvature contribution to the Hall 
conductivity from Chern gapped Dirac fermions, which is (0.13 ± 0.01)e2/h per 
manganese kagome layer based on the tunnelling data.
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Methods

Single-crystal growth
Single crystals of TbMn6Sn6 were prepared by using the flux growth 
method with tin as the flux41,42. A mixture of (TbMn6)4.5Sn95.5 elements 
was packed into an alumina crucible, which was then sealed with a 
piece of quartz wool as ‘catch filter’ in a quartz ampoule under vacuum. 
The ampoule was heated to 1,000 °C and slowly cooled to the spin 
temperature of 600 °C over several days. After centrifugation, several 
hexagonal, flat, millimetre-sized crystals with metallic luster were found 
in the crucible. The temperature-dependent resistivity of the crystals 
shows a metal-like profile with a residue resistivity ratio larger than 
100, indicating the high quality of the crystals.

Scanning tunnelling microscopy characterization
Single crystals with size up to 4 mm × 4 mm × 1 mm were cleaved 
mechanically in situ at 77 K in ultrahigh vacuum conditions, and then 
immediately inserted into the microscope head, already at 4He base 
temperature (4.2 K). The magnetic field was applied with zero-field 
cooling. To acquire the field-dependent tunnelling data, we first with-
drew the tip about 1 μm from the sample. We then slowly increased 
the field by 0.5 T, and then set the superconducting magnet into the 
persistent mode. We then approached the tip to the same surface and 
scanned the image to locate the same atomic position. After allowing 
for an additional 1 h of relaxation time of the system, we performed 
high-resolution spectroscopy at this field. We repeated this procedure 
for the field from 0 T to 9 T. We also checked the tunnelling spectros-
copy at −1 T, −2 T and −3 T, confirming the consistency of the Landau 
fan data with reverse magnetization. Tunnelling conductance spectra 
were obtained with an iridium/platinum tip using standard lock-in 
amplifier techniques with a root-mean-square oscillation voltage of 
1 meV and a lock-in frequency of 877 Hz. Topographic images were taken 
with a tunnelling junction setup of voltage V = −100 mV and current 
I = 0.05–0.5 nA. The conductance maps were taken with a tunnelling 
junction setup of V = −250 mV and I = 1 nA.

Transmission electron microscopy characterization
Thin lamellae were prepared by focused ion beam cutting. All samples 
for experiments were polished using a 2-kV gallium ion beam to mini-
mize the surface damage caused by the high-energy ion beam. Trans-
mission electron microscopy imaging, atomic-resolution high-angle 
annular dark-field scanning transmission electron microscopy imag-
ing and atomic-level energy-dispersive X-ray spectroscopy mapping 
were performed on a Titan Cubed Themis 300 double Cs-corrected 
scanning/transmission electron microscope equipped with an 
extreme field emission gun source operated at 300 kV with a super-X 
energy-dispersive spectrometry system.

Electrical transport and magnetization measurements
Both longitudinal and Hall resistivities were measured in a commercial 
physical property measurement system (PPMS, Quantum Design) by 
using a standard four-probe method. An a.c. resistance bridge (Model 
372, Lakeshore) was used to measure the small signals at low tempera-
tures (T < 100 K). Field-antisymmetrization was used for Hall measure-
ment to subtract the longitudinal resistivity component. Magnetization 
measurements were performed in a commercial superconducting 
quantum interference device (Quantum Design) with the field applied 
along the c axis. We used the reading microscope to measure the size of 
the sample, and the typical sample thickness for our transport meas-
urement is 0.1 mm. The main source of the Hall resistivity error comes 
from the thickness of the sample d, which is around 5%. We used the 
thickness to calculate the Hall resistivity, ρyx = Ryx × d. For TbMn6Sn6, 
the one-unit cell contains two manganese kagome layers, so we divide 
e2/h by c/2 (half of the unit cell constant along the c axis) to obtain the 
quantum-limit value of anomalous Hall conductance.

Extended crystal structure characterization
TbMn6Sn6 has a layered crystal structure with the space group P6/mmm 
(number 191) and lattice constants a = 5.53 Å and c = 9.023 Å (ref. 24). It is 
formed by stacking of TbSn2–Mn3–Sn–Sn2–Sn–Mn3–TbSn2 as shown in 
Extended Data Fig. 1. In the TbSn2 layer, the Sn2 forms a hexagonal lattice 
with the terbium atoms at the centre of the hexagons. Each Sn2 layer is 
sandwiched by TbSn2 layers and tin atoms form hexagonal structures 
sitting directly below (above) the tin atoms of the TbSn2 layer. The 
Mn3–Sn layers are located between the TbSn2 and Sn2 layers. In each 
Mn3–Sn layer, the manganese atoms form a kagome lattice and tin 
atoms are positioned at the centre of each kagome pattern, with tin 
atoms being located far below (above) the manganese layers. Hence 
it can be viewed as a pure manganese layer of kagome structure. This 
pure kagome layer is distinguished from the kagome lattice containing 
additional tin atoms in other well-known kagome magnets, including 
Fe3Sn2, FeSn, Co3Sn2S2 and Mn3Sn.

The single-crystal image is shown in Extended Data Fig. 2a. The crystal 
has a flake-like hexagonal shape and is easily cleaved to yield a shining 
surface, both of which are consistent with its quasi-two-dimensional 
structure. The Laue diffraction pattern of the bulk crystal shows sharp 
Bragg spots with hexagonal symmetry in Extended Data Fig. 2b, sup-
porting high-quality crystallization. The in-plane, atomic-resolution, 
cross-sectional image and its elemental analysis taken by a scanning 
transmission electron microscope are provided in Extended Data 
Fig. 2c–e, demonstrating the atomic arrangement consistent with its 
crystal structure.

Extended magnetization and electrical transport data
TbMn6Sn6 manifests a spin reorientation transition at about 310 K. 
Below this temperature, the easy-magnetization direction changes 
from the basal plane to the c axis23,24,42,43. Extended Data Fig. 3a shows 
that the single-crystalline TbMn6Sn6 is a hard magnet with consider-
able hysteresis below 200 K. The coercive field is about 1 T below 100 K, 
much larger than that for other kagome magnets.

We systematically explore its anomalous Hall resistivity under the 
magnetic field at different temperatures (Extended Data Fig. 3b). The 
Hall resistivity shows sharp steps/loops from 300 K to 2 K, indicating 
the anomalous Hall contribution ρAH. The top inset in Extended Data 
Fig. 3b shows the temperature evolution of the longitudinal resistivity 
ρxx and anomalous Hall resistivity ρAH.

Extended quantum oscillation data
We collect transport data on the single crystals under a magnetic  
field up to 14 T in Extended Data Fig. 4a. Above 7 T, quantum oscilla-
tions could be identified in the magnetoresistance after subtracting  
a smooth background, revealing the Landau quantization from the 
bulk crystal. These oscillations damp slowly with temperature and are 
observable at 20 K. Fast Fourier transformation (FFT) analysis reveals 
a dominant frequency of 96 T. According to the Onsager relation44, 
A F=k

e
ħ

2π , where Ak is the extremal cross-sectional area of the Fermi 
surface and F is the measured frequency, this corresponds to a Fermi 
length kF of 0.054 Å−1, if the extremal cross-sectional area is assumed 
to be circular (A k= πk F

2 ). This matches the kF (0.05 ± 0.01 Å−1) of the 
Dirac band from angle-resolved photoemission, which is consistent 
with the tunnelling data as well (Fig. 3c). Fitting the temperature evo-
lution of FFT signal to the standard Lifshitz–Kosevich formula44, 
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B
, with kB being the Boltzmann constant and 

m* the cyclotron mass, we estimate the cyclotron mass of the hole 
carriers to be (0.13 ± 0.01)me, where me is the free electron mass. This 
agrees with the cyclotron mass of the Dirac electrons based on the 
tunnelling data ED/ν2 = (0.13 ± 0.01)me.

We further trace the angle dependence of the Fermi morphology 
by varying field direction in transport measurements. As shown in 
Extended Data Fig. 4c, the FFT frequency changes in a 1/cosθ manner, 
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where θ is the tilted angle from the crystallographic c axis, which indi-
cates that this Fermi surface in the bulk crystal is two-dimensional-like. 
This is consistent with the tunnelling data that the Landau quantiza-
tion of Dirac electrons is localized on the manganese kagome lattice. 
Therefore, the transport spectroscopic consistency in the Fermi length, 
cyclotron mass and quasi-two-dimensional nature of the Landau  
quantization signal support the bulk quasi-two-dimensional nature of 
the Dirac electrons in this kagome magnet.

We also note that in Extended Data Fig. 4b, in addition to the main 
peak, there are additional bumps in the FFT signal of the quantum  
oscillation data. This is echoed in the tunnelling Landau quantization 
data showing additional bumps that exist near the Fermi energy, which 
are much weaker than the main Dirac Landau levels. These second-order 
signals could be related to additional Fermi surfaces contributions in 
this system.

Extended anomalous Hall transport data
The spectroscopic data suggest that the Chern gap is just above the 
Fermi level. Proper electron doping or gating could drive the Fermi level 
into the Chern gap to enhance the Hall response. Here we explore the 
possibility of iron doping. The Tb(Mn1−xFex)6Sn6 compounds (x = 0.1, 
0.2) were prepared using the same method used for TbMn6Sn6. We 
observe that with iron doping, the intrinsic Hall conductance increases 
substantially and is close to the quantum limit at x = 0.1, while it drops 
on further doping (at x = 0.2) as shown in Extended Data Fig. 5. This 
electron-doping exploration is consistent with the existence of a Chern 
gap above the Fermi level.

Extended tunnelling data
Inspired by the step-edge-state observation (Fig. 4a), we explore the 
tunnelling signal on the side cleaving surface (Extended Data Fig. 6a). 
Tunnelling on the side surface is challenging as there is no natural cleav-
ing plane, and the tunnelling signal can often be unstable. We first 
obtain stable tunnelling on a large area of the side surface (Extended 
Data Fig. 6b) through extensive exploration. Then, we perform dI/dV 
mapping over an area of 60 × 60 nm, and their direct Fourier trans-
forms give rise to the quasiparticle scattering signals. We find that the 
quasiparticle scattering along the bulk edge direction is substantially 
reduced within the energy range of the Chern gap determined by the 
Landau quantization (Extended Data Fig. 6c), indicating the absence 
of backscattering signal of the in-gap edge states. This scattering  
observation supports the dissipationless nature of the edge state within 
the Chern gap.

Extended angle-resolved photoemission data
Photoemission measurements were conducted at a synchrotron beam-
line. Single crystals were cleaved in situ in ultrahigh vacuum conditions 
at a temperature of 12 K on the photoemission manipulator and then 
transferred to measurement position while maintaining temperature 
and pressure. Photoemission measurements were conducted using 
90–120-eV incident photons with linear horizontal polarization,  
such that the light was s-polarized with respect to the sample surface.  
A Scienta R4000 analyser was used to collect angle-resolved pho-
toemission spectra with an energy resolution of 30 meV and angular 
resolution of 0.2°. Extended Data Fig. 7 shows additional photoemis-
sion data for this material.

The fundamental model for a kagome Chern magnet
The effective Hamiltonian for a ferromagnetic kagome lattice (Extended 
Data Fig. 8a) can be written as

H H H H= + +k SOI m

where Hk describes the spinless tight-binding model of the kagome 
lattice with nearest-neighbour hopping t and lattice spacing a

∑ ∑H tc c μ c c= − −
ij

i j
i

i ik
⟨ ⟩

+ +

Here c c( )j i
+  is the electron annihilation (creation) operator at site j  

(or site i) in the spinor notation. μ is the chemical potential.
HSOI is the Kane–Mele type spin–orbit interaction

∑H i λv c s c= ( )
ij

ij i z jSOI
+

where λ is the interaction amplitude, sz is the spin Pauli matrix and 
d d zi jv = 2/ 3 ( × ) ⋅ij  with di and dj denoting the unit vectors along the 

two bonds that the electron traverses from the site i to site j on the 
kagome lattice.

Hm is the double exchange coupling JH between the ferromagnetic 
moment mi and the conduction electrons:

s m∑H J c c= − ⋅
i

i i im H
+

Since TbMn6Sn6 is ferrimagnetically ordered in the z direction, we 
can use a spinless model to describe this effective model with
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where fi is the fermion operator in the low-energy spin z component 
and ED is the Dirac cone energy. Expanding around ( )K = ± , 0a±

2π
3

 
(Extended Data Fig. 8b), a Chern gapped Dirac model can be obtained 
as

H ħv k σ k σ
Δ

σ E= ( − ) +
2

+x y y x zD D

where σi  (i  =  x, y, z) are the Pauli matrices of pseudospin, v is  
the Dirac velocity and Δ is the gap at the Dirac point (Extended  
Data Fig.  8c, d). In the above tight-binding model, v t= 3  and 
Δ λ= 2 3 .

Next, we carry out an open boundary strip calculation. As shown 
in Extended Data Fig.  8e, there is a clear chiral edge dispersion  
when λ = 0.1t and ED = 0 in accordance with bulk Chern number C = 1. 
Using the Kubo formalism40, the Hall conductivity σxy can be calculated 
to be:
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where the kF is the Fermi length, as shown in Extended Data Fig. 8f. From 
the above equation, σxy is quantized to e2/h when the chemical potential 
is within the Chern gap, in which case we set kF = 0.

In addition, similar to graphene and if the chemical potential is well 
outside the Chern gap, the cyclotron mass can be obtained45 as
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where A(E) is the area in k space enclosed by the orbit, and EF is the 
Fermi energy.

Considering the Landau level of the Chern gapped Dirac model, we 
can apply a uniform magnetic field B and choose the Landau gauge: 
A = B(−y, 0, 0). The effective Hamiltonian becomes

H v p eBy σ p σ
Δ

σ E
gμ

B= [( ^ − ) − ^ ] +
2

+ −
2x y y x zD D

B

where p̂x (or p̂y
) is the momentum operator in the x (or y) direction.



As kx is still a good quantum number, one can diagonalize the Hamil-
tonian in the y harmonic oscillator basis45. The Landau level eigenvalues 
are given by

E E Δ n eħv B gμ B n= ± ( /2) + 2 −
1
2

( = 0, ± 1, ± 2 …)n D
2 2

B

First-principles calculation
The electronic band structures of TbMn6Sn6 were computed using the 
projector augmented wave method as implemented in the Vienna ab 
initio simulation package46–48 version 5.4.4 within the generalized gra-
dient approximation49 scheme. The spin–orbit coupling was included 
self-consistently in the calculations of electronic structures with a 
k-point mesh of 13 × 13 × 7. The experimental lattice structure param-
eters and magnetic structure were used. We used Tb d orbitals, Mn s and 
d orbitals, and Sn p orbitals to construct Wannier functions, without 
performing the procedure for maximizing localization. The simulated 
scanning tunnelling microscope image was based on the calculation 
of the real-space charge density distribution according to the Tersoff–
Hamann approach, which was acquired by the program HIVE50.

The calculated bulk band structure along the high-symmetry direc-
tions is shown in Extended Data Fig. 9a (with spin–orbit coupling) and 
Extended Data Fig. 9b (without spin–orbit coupling), where we find a 
magnetic Dirac cone structure at the Brillouin zone corners (K and Kʹ), 
consistent with the angle-resolved photoemission exploration. The 
bands around −0.2 eV are relatively flat in contrast with the steep Dirac 
bands, which can be the flat band candidate. For the manganese- 
terminating surface, the simulated topographic image in Extended Data 
Fig. 9c shows the kagome symmetry consistent with experimental data. 
We further find that 90% of the spectral weight of the Dirac bands is from 
the manganese in-plane 3d orbitals including dxy and d x y−2 2 (Extended 
Data Fig. 9d), which is consistent with their quasi-two-dimensional nature 
in the experiment. Moreover, the Dirac band features a high Fermi veloc-
ity of 4 × 105 m s−1, and a large energy gap of 35 meV, both of which are 
consistent with the Dirac band dispersion extracted from the tunnelling 
data on the manganese kagome layer on the energy scale (blue curve in 
Extended Data Fig. 9d). The magnetic Dirac gap is opened by atomic 
spin–orbit coupling, as shown in Extended Data Fig. 9d, e, as well as in 
Extended Data Fig. 9a, b, consistent with the fundamental kagome model.

Features of a quantum-limit Chern magnet in real and 
momentum space
Extended Data Fig.  10a, b illustrates our key findings in this 
quantum-limit Chern magnet. In momentum space, spin-polarized 
Dirac fermions with a Chern gap exhibit Landau quantization. In real 
space, spin–orbit-coupled magnetic kagome lattice carries a topologi-
cal edge state within the Chern energy gap.

Data availability
The data that support the findings of this study are available from the 
corresponding authors upon reasonable request. Source data are pro-
vided with this paper.
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Extended Data Fig. 1 | Crystal structure of TbMn6Sn6. a, Crystal structure of TbMn6Sn6. b, Side view of the crystal structure.



Extended Data Fig. 2 | Crystal structure characterization. a, Single-crystal 
image of TbMn6Sn6. The inset is an image of a cleaved crystal. b, Laue diffraction 
image of TbMn6Sn6. c, In-plane atomic-resolution image of TbMn6Sn6 taken by a 
scanning transmission electron microscope, showing the in-plane lattice 

arrangement. d, In-plane electron diffraction pattern of the crystal taken by 
transmission electron microscopy, showing hexagonal symmetry. e, In-plane 
elemental mapping by an energy dispersive X-ray detector. All data were taken at 
300 K.



Article

Extended Data Fig. 3 | Magnetization and transport data. a, Magnetic 
hysteresis loop with field applied along the c axis at different temperatures. 
Inset: the saturated magnetic moment at 0 T versus temperature. b, Hall 
resistivity measured as a function of the magnetic field at different 

temperatures. The bottom inset illustrates the geometry of the measurement, 
where the field is applied along the c axis and current is applied along the a axis 
of the crystal. Top inset: temperature evolution of the longitudinal resistivity 
ρxx and anomalous Hall resistivity ρAH.



Extended Data Fig. 4 | Quantum oscillation data. a, Oscillatory component 
of magnetoresistance at different temperatures after subtracting a smooth 
background. b, FFT spectrum of quantum oscillations in a, showing a principle 
frequency of 96 T. Inset: fitting of the temperature evolution of this peak 
amplitude with the Lifshitz–Kosevich formula, yielding a cyclotron mass of 

0.13 ± 0.01 me. c, Angle dependence of the oscillatory frequency. The magnetic 
field is tilted from the crystallographic c axis to the a axis. The solid line is a fit 
to the function 1/cosθ. Inset: a sketch of a two-dimensional Fermi surface, 
whose cross-sectional area evolves in a 1/cosθ manner when field direction is 
tilted θ away from the central axis.
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Extended Data Fig. 5 | Anomalous Hall transport data. The anomalous Hall 
resistivity ρAH plotted against ρ xx

2  from 2 K to 300 K in Tb(Mn1−xFex)6Sn6 
(Fe-doped TbMn6Sn6). The near-linear scaling indicates an intrinsic Berry 

curvature contribution to the anomalous Hall effect as the slope of each data 
set, which has a non-monotonic variation with doping. The black dotted line is 
the quantum-limit Hall value assuming one e2/h per manganese kagome layer.



Extended Data Fig. 6 | Edge tunnelling data. a, Schematic illustrating 
tunnelling on the side cleaving surface. b, Topography of the side cleaving 
surface, showing stable tunnelling signal. c, Quasiparticle scattering along the 

bulk crystal edge direction (x). Substantial reduction of the scattering is 
observed within the Chern gap energy determined by the Landau quantization 
(white lines), indicating the absence of backscattering of the in-gap edge state.
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Extended Data Fig. 7 | Angle-resolved photoemission data. This set of data 
are taken at a phonon energy of 120 eV, showing the band dispersion along high 
symmetry lines (left) and the constant energy maps (right).



Extended Data Fig. 8 | Fundamental model for a kagome Chern magnet.  
a, The kagome lattice with the sublattice unit cell labelled by A, B and C. The 
Kane–Mele type spin–orbit interaction is defined with the form factor νij. b, The 
Brillouin zone of the kagome lattice with two Dirac cones at ( )K = ± , 0a±

2π
3

. The 
blue path is the band structure k path used in c. c, Band structure of kagome 
lattice with λ = 0 (blue lines), λ = 0.1t (red lines) and ED = 0 along the k path in b.  

d, Band structure magnified around Dirac cone K+. e, Edge states in the 
tight-binding model by 200 unit cells with open boundary conditions along y 
and periodic boundary conditions along x and λ = 0.1t and ED = 0. The red line is 
the edge state at the top edge. The edge state at the bottom edge is ignored 
here for simplicity. f, Hall conductivity σxy in units of e2/h as a function of energy.
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Extended Data Fig. 9 | First-principles exploration of the tunnelling signal 
and band structure. a, b, Calculated bulk band structure (momentum-resolved 
density of states from all orbitals along the high symmetry directions) with spin–
orbit coupling (a) and without spin–orbit coupling (b). All kz bands are projected 
in the surface Brillouin zone. c, Simulation of tunnelling topographic image of 

manganese kagome surface with V = −100 mV. d, e, Calculated manganese 3d 
in-plane orbital bands with (d) and without (e) spin–orbit coupling. The Dirac 
band dispersion obtained from the tunnelling data are shown as the blue  
curve in d.



Extended Data Fig. 10 | Features of a quantum-limit Chern magnet in real 
space and momentum space. a, In momentum space, spin-polarized Dirac 
fermions with a Chern gap (two separated cones with arrows) exhibit Landau 
quantization where the Landau orbits are illustrated by darker area in the 

cones. In real space, the spin–orbit-coupled magnetic kagome lattice (spheres 
with arrows) carries a topological edge state (orange ring) within the Chern 
energy gap. The gap Chern number in this material is C = 1. b, A simplified 
illustration of the quantum-limit Chern magnet discovered in this work.
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